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Cortico-striatal representation of time in animals and humans
Warren H Meck1, Trevor B Penney2 and Viviane Pouthas3
Interval timing in the seconds-to-minutes range is crucial to

learning, memory, and decision-making. Recent findings argue

for the involvement of cortico-striatal circuits that are optimized

by the dopaminergic modulation of oscillatory activity and

lateral connectivity at the level of cortico-striatal inputs. Striatal

medium spiny neurons are proposed to detect the coincident

activity of specific beat patterns of cortical oscillations, thereby

permitting the discrimination of supra-second durations based

upon the reoccurring patterns of subsecond neural firing. This

proposal for the cortico-striatal representation of time is

consistent with the observed psychophysical properties of

interval timing (e.g. linear time scale and scalar variance) as well

as much of the available pharmacological, lesion, patient,

electrophysiological, and neuroimaging data from animals and

humans (e.g. dopamine-related timing deficits in Huntington’s

and Parkinson’s disease as well as related animal models). The

conclusion is that although the striatum serves as a ‘core timer’,

it is part of a distributed timing system involving the

coordination of large-scale oscillatory networks.
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Diverse lines of evidence suggest that striatal neurons are

crucial to duration discrimination in the seconds-to-min-

utes range through their participation in large-scale oscil-

latory networks involving functional links among

mesolimbic, nigrostriatal, and mesocortical dopaminergic

systems [1�,2��,3]. Pharmacological studies indicate that

the administration of indirect dopamine (DA) agonists

such as cocaine and methamphetamine produce pro-

portional leftward shifts of timing functions, while DA

receptor blockers such as haloperidol and raclopride pro-

duce the opposite effect [4��]. The D2 receptor is crucial

to the mediation of these pharmacological effects [5] and
www.sciencedirect.com
transient overexpression of striatal D2 receptors impairs

the acquisition of temporal control [6��]. In addition,

deletion of the DA transporter (DAT) gene, but not

the norepinephrine transporter gene, abolishes the ability

to discriminate supra-second durations in homozygous

mice and leads to a decreased sensitivity to the clock-

speed enhancing effects of methamphetamine in hetero-

zygous mice, indicating that excess levels of DA impair

temporal integration [7]. Likewise, lesions of DA/DAT-

rich areas such as the substantia nigra pars compacta

(SNC) and dorsal striatum lead to decreased levels of

DA and impairments in supra-second timing, while

lesions of the ventral striatum eliminate the behavioral

contrast observed between different delays to reward and

lesions of the frontal cortex lead to the loss of pharma-

cological control over clock speed [8��,9]. Moreover,

electrophysiological recordings from striatal spiny

neurons that receive both dopaminergic and glutaminer-

gic inputs show them to be directly involved in the coding

of durations in the seconds-to-minutes range, as demon-

strated in Figure 1 [10,11��], whereas compartmentaliza-

tion of the human striatum, similar to that in other

animals, has revealed correlations between D2-receptor

binding and cognitive performance related to temporal

processing [12].

Recent neurophysiological modeling of interval-timing

proposes that the neural inputs that constitute the time

code arise from the activity of large areas of the cortex

[2��,11��,13�]. The frontal cortex in particular contains

neurons that oscillate at different rates (5–15 Hz) and

striatal spiny neurons that receive their synaptic input from

the cortex can monitor the oscillatory patterns of this

cortical activity. According to the Striatal Beat Frequency

(SBF) model [14��], coincidence detection in the striatum

results in the identification of a pattern of oscillatory firings

or beats (i.e. similar to a musical chord) among other beats

that represent noise. The probability that a particular

‘chord’ will be identified as a signal increases as the number

of detectors that simultaneously respond to such beats

increases. In the SBF model, signal durations are translated

into a particular cortical pattern formed by the firing of

multiple neurons that have different oscillation rates. This

coding scheme ensures that a large number of specific

supra-second intervals can be produced by the integration

of a limited number of primitives represented by different

subsecond oscillation frequencies in the cortex. The

relevant components of the SBF model of interval timing

are illustrated in Figure 2. In comparison with traditional

pacemaker/accumulator models of interval timing where

DA is assumed to be the neurobiological substrate of the

pacemaker pulses, in the SBF model the role of phasic DA
Current Opinion in Neurobiology 2008, 18:145–152
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Figure 1

Representative patterns of striatal neuron activity with maximal firing at either 10-s or 40-s target durations plotted in conjunction with lever presses for

a rat trained in a bi-peak procedure. (a) Striatal medium spiny neuron showing a strong increase in firing rate at the first target duration of 10 s, but

failing to exhibit a robust increase in firing at 40 s despite an increase in lever pressing. (b) A different striatal neuron showing a large increase in firing

rate at 40 s, with relatively little change around 10 s despite an increase in lever pressing. In both cases, the distributions of neural activity contrast with

the lever-press distributions, which show equivalent peaks at both 10 s and 40 s. Other analyses indicate that the neurons are keeping track of signal

duration and are not related to the frequency, topography, or duration of lever presses. Adapted with permission from [11��].
release is to serve as a ‘start gun’ by indicating the onset of a

relevant signal — leading to the synchronization of cortical

oscillations and the resetting of the membrane properties

of the striatal spiny neurons [2��]. Consequently, this initial

DA pulse coincides with the ‘closing of the switch’ to begin

timing and later, at the end of the interval, a second DA

pulse co-occurring with the delivery of reward serves to

strengthen synaptic connections that are active within the

striatum at the time of feedback — thereby building a

‘coincidence detector’ for a specific set of signal durations.

In contrast, tonic DA release is considered to modulate the

speed of the internal clock by altering the frequencies

of cortical oscillations [14��]. Consequently, this cortico-

striatal timing mechanism allows for the anticipation of

future events [15–17,18�] and probably contributes to

the DA-related timing deficits observed in individuals

with attention-deficit disorders, Huntington’s disease
Current Opinion in Neurobiology 2008, 18:145–152
(HD), Parkinson’s disease (PD), and schizophrenia (SZ)

[19–21].

Evidence from patient populations and
electrical potentials
Timing deficits in patients with impairment in cortico-

striatal function are typically associated with reduced

amplitude of slow brain potentials, particularly that of

the contingent negative variation (CNV). This slow,

negative potential shift develops over frontal and

fronto-central areas in situations where a warning

stimulus (S1) is followed by a predictable interval before

a second (imperative) stimulus (S2) that cues a reaction

time response. It was originally interpreted as a reflection

of stimulus anticipation and preparation of the motor

response [22]. Since then, relationships between pro-

cesses involved in interval-timing and CNV features have
www.sciencedirect.com
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Figure 2

Illustration of the Striatal Beat Frequency (SBF) model of interval timing. In this model, the activation patterns of oscillatory neurons in the cortex (e.g.

neurons A, B, and C) are monitored by striatal medium spiny neurons (e.g. neuron D). These cortical neurons have patterns of activity that fire with

different frequencies and converge onto spiny neurons. At the beginning of an interval, these oscillating neurons are synchronized and the status level

of the spiny neurons reset by dopaminergic input from the ventral tegmental area and substantia nigra, respectively. The delivery of feedback at the

target duration produces a pulse of dopamine thereby strengthening the synapses in the dorsal striatum that are activated as a result of the beat-

frequency pattern of these cortical neurons at that specific point in time as indicated by the green arrow. In this manner, mechanisms of long-term

potentiation and long-term depression are used to strengthen and weaken synaptic weights in order to produce a record in memory of the target

duration. Later, when the same signal duration is timed again, spiny neurons compare the current pattern of activation of these cortical neurons with

the pattern stored in memory in order to determine when the target duration has been reached. When the clock and memory patterns match, as

determined by coincidence detection, the spiny neurons fire to indicate that the interval has elapsed as illustrated for the 10-s and 40-s target durations

presented in Figure 1. Adapted with permission from [14��].
been well documented [23,24]. Studies using various

types of timing tasks showed the attenuation or even

the absence of the anticipatory negative wave in PD

patients [25]. Low CNV amplitudes before antisaccades

are observed in SZ and are related to poor task preparation

[26]. Bradykinesia scores in HD are significantly corre-

lated with an early CNV amplitude reduction compared

to controls [27]. In patients, decreased activation of fron-

tal cortical areas, including the supplementary motor area

(SMA) and prefrontal cortex, probably results from

impaired thalamocortical output of the basal ganglia.

Besides, L-DOPA treatment or subthalamic nucleus

stimulation, shown to be effective in improving the

clinical symptoms of PD, also improved cortical function-

ing as suggested by significantly increased CNV ampli-

tudes over frontal and frontocentral regions [28,29].

These findings corroborate functional magnetic reson-

ance imaging (fMRI) studies showing that brain acti-

vation patterns in PD patients are partially

‘normalized’ with DA supplementation [30]. Moreover,

shifts in cortical activity from medial to lateral areas in PD

or abnormal activation of the posterior part of anterior

cingulate cortex in HD patients compared to controls

appears to reflect a compensatory mechanism for the

altered basal ganglia function [25,27–31].
www.sciencedirect.com
CNV data have been obtained through scalp and cor-

tical recordings. Therefore, studies using simultaneous

recording of CNV and fMRI data acquisition [32] or

using intracerebral recordings [33] in a CNV paradigm

are of particular interest as illustrated in Figure 3. On

the one hand, BOLD activity during the period of CNV

generation was enhanced in SMA and adjacent cingu-

late cortex, thalamus, and bilateral insula. Interestingly,

covariation of regional brain activity with CNV ampli-

tude was found in the thalamus together with cingulate

and SMA, confirming involvement of these structures

in CNV generation. On the other hand, intracerebral

recordings in epileptic patients showed that there were

CNV generators in the basal ganglia, putamen, caudate,

and pallidum, supporting the role of subcortical struc-

tures and the cortico-striatal-thalamo-cortical circuit in

the generation of scalp-recorded CNV. These data are

consistent with the amplitude decrease of the CNV

found in PD patients and with the CNV restoration

following L-DOPA treatment. Data from patients com-

bined with neuroimaging studies show that normal

CNV and accurate interval-timing mechanisms are de-

pendent on intact basal ganglia function, which is

consistent with the timing circuit proposed by the

SBF model.
Current Opinion in Neurobiology 2008, 18:145–152
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Figure 3

Relationship between regional brain activity and the Contingent Negative Variation (CNV). (a) Diagram illustrating the CNV paradigm: participants were

presented with repeated trials of two tones, a warning stimulus (S1) and an imperative stimulus (S2) to which they were required to make a reaction

time response. (b) Averaged EEG data of one subject, obtained during simultaneous fMRI data acquisition. (c) Brain regions modulated by CNV

amplitude: bilateral thalamus, anterior cingulate, SMA, and cerebellum. Adapted with permission from [31].
It should be noted, however, that relationships between

modulation of CNV features (amplitude and resolution

time) and timing performance have typically been inter-

preted within a pacemaker/accumulator framework [34–
36]. It has been proposed that CNV amplitude reflects the

number of pulses accumulated during an interval with

higher CNV amplitudes observed during intervals per-

ceived as longer than the target duration as compared to

intervals perceived as shorter than the target. Certain

features of CNV activity have also been shown to be similar

to those of climbing neuronal activity observed through

intracerebral recordings in animals: CNV activity peaked at

the end of the memorized duration, and its slope varied

inversely with the length of this duration suggesting that

both activities reflect the anticipation of the entrained

interval termination [36]. Recent reaction time studies

have renewed and generalized the idea of integration over

time, and examined how the brain might accumulate

evidence for a decision, whether perceptual, mnemonic,

or otherwise. These results suggest that decision-making

can be explained by a form of ‘near perfect’ temporal inte-

gration that stops when a criterion amount of evidence has

been accumulated [37�,38�,39�]. In this manner, temporal

integration within specific time ranges (e.g.<1–2 s) may be

a fundamental computation underlying higher cognitive

functions that are dissociated from immediate sensory

inputs or motor outputs. Consequently, further studies

must translate these issues involving different time ranges

and frequency bands with respect to the SBF model and

other forms of temporal integration [40��,41��].
Current Opinion in Neurobiology 2008, 18:145–152
Neuroimaging evidence using fMRI and PET
Assuming that the SBF model applies to interval timing

in humans as well as it does in other animals, then two

features of the model should be consistent with the

extant neuroimaging literature. First, timing should elicit

activation in a functional circuit that comprises the

thalamus, the striatum, the substantia nigra, and distrib-

uted areas of cortex, with the precise cortical region/s

perhaps depending on stimulus modality [42]. Although

establishing a basic anatomical correspondence between

the SBF model and the neuroimaging data supports the

model, it is not, in itself, sufficient proof. This is because

brain structures that are active during timing tasks may

be involved in general attention, memory, and decision

processes, whereas the SBF model allocates timing

specific functions to particular brain structures. Con-

sequently, the second crucial component is that modu-

lation of brain activity during timing should be consistent

with those hypothesized timekeeping roles. For

example, showing that quantitative changes in brain

activity parallel quantitative changes in behavior, that

is the scalar property, is strong evidence that a given brain

structure specifically underlies interval timing rather

than merely reflects general memory and decision pro-

cesses [43].

During the past decade, numerous human fMRI studies

using timing tasks that are conceptually equivalent to the

tasks used in animals, such as duration discrimination and

reproduction, have revealed the involvement of many
www.sciencedirect.com
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Table 1

Summary of recent fMRI and PET studies of subsecond and supra-second timing revealing activation in cortical (blue) and subcortical

(red) structures specified in the Striatal Beat Frequency (SBF) model of interval timing

Task: DD = duration discrimination, DE = duration estimation, DR = duration reproduction, RC = rhythm comparison, TP = tapping. Task comparison

(Task comp.): T = timing, O = other task (color discrimination [46��,61��]), C = nontiming control task (press response button after stimulus [45��,61��];

passively view stimulus [47��,60]), ICA = independent components analysis. Signal modality (Sig. mod.): A = auditory, V = visual. Timing condition:

D = difficult, S & L = short and long duration versus control comparison, S > L = short versus long comparison, C easy = color discrimination task

easier than timing task, C diff = color discrimination task more difficult than timing task, Enc = encoding condition, L > S = long versus short

comparison. Anatomical directions: B = bilateral activation, L = left hemisphere activation, R = right hemisphere activation, Ant = anterior, Inf = in-

ferior, Mid = middle, Pos = posterior, Sup = superior. Brain structures: AG = angular gyrus, bd = body, C = caudate, DLPFC = dorsolateral prefrontal

cortex, dPMC = dorsal premotor cortex, FC = frontal cortex, FO = frontal operculum, G = globus pallidus, IFC = inferior frontal cortex, IFG = inferior

frontal gyrus, IPS = intraparietal sulcus, lg = lingual gyrus, LPMC = lateral premotor cortex, MFC = medial frontal cortex, MFG = middle frontal gyrus,

MTG = middle temporal gyrus, OC = occipital cortex, PC = parietal cortex, PFC = prefrontal cortex, prec = precuneus, pSMA = pre-supplementary

motor area, P = putamen, SFG = superior frontal gyrus, SM1 = primary sensorimotor cortex, SMA = supplementary motor area, SMFG = superior

mesial frontal gyrus, SMG = supramarginal gyrus, S = substantia nigra, STG = superior temporal gyrus, tl = tail, TC = temporal cortex, TH = tha-

lamus, VLPFC = ventrolateral prefrontal cortex, vPMC = ventral premotor cortex. (See Refs. [58�,59�,62��,63]).
cortical areas, including the DLPFC, SMA, preSMA,

STG, and inferior parietal lobule. Equally important

for the SBF model is the evidence of activity in the

striatum (both caudate and putamen), thalamus, and

substantia nigra. A summary of recent fMRI studies

showing timing-related activation in these areas is pre-

sented in Table 1.

Is there evidence that these regions comprise a functional

network? If spatially distinct brain activations share similar

hemodynamic changes over time, then this suggests that

those areas form a functional circuit. Stevens et al. [44��]
used spatial ICA to isolate a circuit comprising the right

middle frontal gyrus, left cingulate, SMA (superior frontal

gyrus), right MTG, right SMG, bilateral insula, bilateral

caudate, bilateral putamen, bilateral globus pallidus, and

bilateral thalamus. Their data analysis revealed activation
www.sciencedirect.com
of this network independent of whether or not the timing

task had an explicit motor component. These results map

exceedingly well onto the functional neuroanatomy of the

SBF model described above.

Can the components of the functional circuit in turn be

mapped onto specific timing roles? Using positron emis-

sion tomography (PET), Jahanshahi et al. [45��] obtained

substantia nigra activation and interpreted it as reflecting

a reinforcement signal and reset mechanism consistent

with the SBF model. Moreover, Coull et al. [46��]
reported that frontal cortical regions invoke a ‘time scale

or time line’ and that the putamen then ‘detects the target

duration within the invoked time scale’ which are pre-

cisely the functions prescribed for these brain areas by the

SBF model [14��]. Although valuable, these demon-

strations of a correspondence between brain area and
Current Opinion in Neurobiology 2008, 18:145–152
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function are less compelling than evidence that changes in

brain activity track behavior, such as demonstrating that

variation in brain activity, measured as percent hemody-

namic signal change, scales with the target duration being

timed in a similar manner to the scalar property or Weber’s

law, that is, the variability in timing behavior grows in

proportion to the mean of the interval being timed [2��].
Meck and Malapani [43] reanalyzed fMRI data from

Hinton and Meck [47��] and showed scalar timing variance

in brain activation only in the putamen, that is, normalized

hemodynamic response functions showed superimposition

in relative time, in an interval-timing condition, but not in a

motor-timing condition. Similar findings have also been

observed using ERP techniques in human infants and

adults [48]. These findings are particularly important

because isolation of psychological processes to subcompo-

nents of a timekeeping network will require demonstration

that brain activation patterns correspond to the psycho-

physical characteristics of interval timing.

Conclusion
The evidence presented here strongly suggests that the

cortical and basal ganglia structures implicated in the SBF

model are used by a wide variety of species [49] in tasks that

present auditory and visual stimuli, durations ranging from

hundreds of milliseconds to several seconds, and require

duration discrimination, production, and reproduction de-

cisions (see Figures 1 and 3, Table 1). As a consequence, a

number of investigators have suggested that the dorsal

striatum may serve as a ‘core timer’ because it is centrally

active in both duration reproduction and duration percep-

tion tasks in both the subsecond and supra-second ranges

[10,11��,14��,45��,47��,50�,51,–53], with the involvement

of specific cortical areas being influenced by task factors

such as signal modality, decision processes, and response

requirements. In addition to providing an oscillatory ‘time

code’ to the striatum, the cortex may also support ‘satellite’

temporal integration mechanisms that are able to function

with some degree of independence from the ‘core timer’,

which is ultimately required for the synchronization of

these distributed timing mechanisms and shifts in dopa-

minergic sensitivity as a function of the level of training,

emotional state, and circadian cycles [2��,7,21,40��,54–57].
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